International Rectifier

IRF2907ZS-7PPbF

Features

- Advanced Process Technology
- Ultra Low On-Resistance
- 175°C Operating Temperature
- Fast Switching
- Repetitive Avalanche Allowed up to Tjmax

Description

Specifically designed for high current, high reliability applications, this HEXFET® Power MOSFET utilizes the latest processing techniques and advanced packaging technology to achieve extremely low onresistance and world -class current ratings. Additional features of this design are a 175°C junction operating temperature, fast switching speed and improved repetitive avalanche rating. These features combine to make this design an extremely efficient and reliable device for use in Server & Telecom OR'ing, Automotive and low voltage Motor Drive Applications.

HEXFET® Power MOSFET

Absolute Maximum Ratings

ADSOIDED INIA	XIIIIuiii natiiiys		
	Parameter	Max.	Units
$I_D @ T_C = 25^{\circ}C$	Continuous Drain Current, V _{GS} @ 10V (Silicon Limited)	180	Α
I _D @ T _C = 100°C	Continuous Drain Current, V _{GS} @ 10V (See Fig. 9)	120	
$I_D @ T_C = 25^{\circ}C$	Continuous Drain Current, V _{GS} @ 10V (Package Limited)	160	
I _{DM}	Pulsed Drain Current ①	700	
P _D @T _C = 25°C	Maximum Power Dissipation	300	W
	Linear Derating Factor	2.0	W/°C
V _{GS}	Gate-to-Source Voltage	± 20	V
E _{AS}	Single Pulse Avalanche Energy (Thermally Limited) ②	160	mJ
E _{AS} (tested)	Single Pulse Avalanche Energy Tested Value ®	410	·
I _{AR}	Avalanche Current ①	See Fig.12a,12b,15,16	Α
E _{AR}	Repetitive Avalanche Energy ⑤		mJ
TJ	Operating Junction and	-55 to + 175	°C
T _{STG}	Storage Temperature Range		
-	Soldering Temperature, for 10 seconds	300 (1.6mm from case)	
	Mounting torque, 6-32 or M3 screw	10 lbf•in (1.1N•m)	

Thermal Resistance

	Parameter	Тур.	Max.	Units
$R_{\theta JC}$	Junction-to-Case ®		0.50	°C/W
$R_{\theta CS}$	Case-to-Sink, Flat, Greased Surface	0.50		
$R_{\theta JA}$	Junction-to-Ambient ®		62	
$R_{\theta JA}$	Junction-to-Ambient (PCB Mount, steady state) ⑦®		40	

HEXFET® is a registered trademark of International Rectifier.

Static @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
$V_{(BR)DSS}$	Drain-to-Source Breakdown Voltage	75			V	$V_{GS} = 0V, I_D = 250\mu A$
$\Delta BV_{DSS}/\Delta T_{J}$	Breakdown Voltage Temp. Coefficient		0.066		V/°C	Reference to 25°C, I _D = 1mA
R _{DS(on)} SMD	Static Drain-to-Source On-Resistance		3.0	3.8	mΩ	V _{GS} = 10V, I _D = 110A ③
$V_{GS(th)}$	Gate Threshold Voltage	2.0		4.0	V	$V_{DS} = V_{GS}$, $I_D = 250\mu A$
gfs	Forward Transconductance	94			S	$V_{DS} = 25V, I_D = 110A$
I _{DSS}	Drain-to-Source Leakage Current			20	μΑ	$V_{DS} = 75V, V_{GS} = 0V$
				250	Î	$V_{DS} = 75V, V_{GS} = 0V, T_{J} = 125^{\circ}C$
I _{GSS}	Gate-to-Source Forward Leakage			200	nA	V _{GS} = 20V
	Gate-to-Source Reverse Leakage			-200	Î	V _{GS} = -20V
Q _g	Total Gate Charge		170	260	nC	I _D = 110A
Q_{gs}	Gate-to-Source Charge		55		Ì	$V_{DS} = 60V$
Q_{gd}	Gate-to-Drain ("Miller") Charge		66		Ĭ	V _{GS} = 10V ③
t _{d(on)}	Turn-On Delay Time		21		ns	$V_{DD} = 38V$
t _r	Rise Time		90		İ	I _D = 110A
t _{d(off)}	Turn-Off Delay Time		92		Ĭ	$R_G = 2.6\Omega$
t _f	Fall Time		44		İ	V _{GS} = 10V ②
L _D	Internal Drain Inductance		4.5		nΗ	Between lead,
						6mm (0.25in.)
Ls	Internal Source Inductance		7.5		İ	from package
						and center of die contact
C _{iss}	Input Capacitance		7580		pF	V _{GS} = 0V
Coss	Output Capacitance		970		Ì	$V_{DS} = 25V$
C _{rss}	Reverse Transfer Capacitance		540			f = 1.0MHz, See Fig. 5
Coss	Output Capacitance		3750	_	†	$V_{GS} = 0V$, $V_{DS} = 1.0V$, $f = 1.0MHz$
C _{oss}	Output Capacitance		650		†	$V_{GS} = 0V, V_{DS} = 60V, f = 1.0MHz$
Coss eff.	Effective Output Capacitance		1110		1	$V_{GS} = 0V$, $V_{DS} = 0V$ to $60V$

Diode Characteristics

2.040 0.14140.00100						
	Parameter	Min.	Тур.	Max.	Units	Conditions
Is	Continuous Source Current			160		MOSFET symbol
	(Body Diode)				Α	showing the
I _{SM}	Pulsed Source Current			700	Ī	integral reverse
	(Body Diode) ①					p-n junction diode.
V_{SD}	Diode Forward Voltage			1.3	V	$T_J = 25^{\circ}C$, $I_S = 110A$, $V_{GS} = 0V$ ③
t _{rr}	Reverse Recovery Time		35	53	ns	$T_J = 25$ °C, $I_F = 110A$, $V_{DD} = 38V$
Q_{rr}	Reverse Recovery Charge		40	60	nC	di/dt = 100A/µs ③

Notes:

- Repetitive rating; pulse width limited by max. junction temperature. (See fig. 11).
- ② Limited by T_{Jmax} , starting $T_J = 25^{\circ}C$, L=0.026mH, $R_G = 25\Omega$, $I_{AS} = 110A$, $V_{GS} = 10V$. Part not recommended for use above this value.
- ③ Pulse width \leq 1.0ms; duty cycle \leq 2%.
- $\ \ \, \Phi \ \, C_{oss}$ eff. is a fixed capacitance that gives the same charging time as C_{oss} while V_{DS} is rising from 0 to 80% V_{DSS} .
- $\$ Limited by T_{Jmax} , see Fig.12a, 12b, 15, 16 for typical repetitive avalanche performance.
- ⑥ This value determined from sample failure population. 100% tested to this value in production.
- This is applied to D²Pak, when mounted on 1" square PCB (FR-4 or G-10 Material). For recommended footprint and soldering techniques refer to application note #AN-994.
- 9 Solder mounted on IMS substrate.

D²Pak - 7 Pin Package Outline

Dimensions are shown in millimeters (inches)

D²Pak - 7 Pin Part Marking Information

EXAMPLE: THIS IS AN IRF2804S-7P WITH LOT CODE 8024 ASSEMBLED ON WW02,2000 IN THE ASSEMBLY LINE "L"

Note: "P" in assembly line position indicates "Lead Free"

<u>OR</u>

D²Pak - 7 Pin Tape and Reel

NOTES, TAPE & REEL, LABELLING:

- 1. TAPE AND REEL.
 - 1,1 REEL SIZE 13 INCH DIAMETER.
 - 1.2 EACH REEL CONTAINING 800 DEVICES.
 - 1.3 THERE SHALL BE A MINIMUM OF 42 SEALED POCKETS CONTAINED IN THE LEADER AND A MINIMUM OF 15 SEALED POCKETS IN THE TRAILER.
 - 1.4 PEEL STRENGTH MUST CONFORM TO THE SPEC. NO. 71-9667.
 - 1,5 PART ORIENTATION SHALL BE AS SHOWN BELOW.
 - 1.6 REEL MAY CONTAIN A MAXIMUM OF TWO UNIQUE LOT CODE/DATE CODE COMBINATIONS.
 REWORKED REELS MAY CONTAIN A MAXIMUM OF THREE UNIQUE LOT CODE/DATE CODE COMBINATIONS.
 HOWEVER, THE LOT CODES AND DATE CODES WITH THEIR RESPECTIVE QUANTITIES SHALL APPEAR ON THE BAR CODE LABEL FOR THE AFFECTED REEL.

- 2. LABELLING (REEL AND SHIPPING BAG).
 - 2.1 CUST. PART NUMBER (BAR CODE): IRFXXXXSTRL-7P
 - 2.2 CUST. PART NUMBER (TEXT CODE): IRFXXXXSTRL-7P
 - 2.3 I.R. PART NUMBER: IRFXXXXSTRL-7P
 - 2.4 QUANTITY:
 - 2.5 VENDOR CODE: IR
 - 2.6 LOT CODE:
 - 2.7 DATE CODE:

Data and specifications subject to change without notice. This product has been designed and qualified for the Automotive [Q101] market.

International
Rectifier